
Table-Critic: A Multi-Agent Framework for
Collaborative Criticism and Refinement in Table Reasoning

Peiying Yu1, Guoxin Chen2,§, Jingjing Wang1,§

1Natural Language Processing Lab, Soochow University
2Institute of Computing Technology, Chinese Academy of Sciences

{pyyu@stu,djingwang@}suda.edu.cn chenguoxin22@mails.ucas.ac.cn

Abstract
Despite the remarkable capabilities of large
language models (LLMs) in various reason-
ing tasks, they still struggle with table rea-
soning tasks, particularly in maintaining con-
sistency throughout multi-step reasoning pro-
cesses. While existing approaches have ex-
plored various decomposition strategies, they
often lack effective mechanisms to identify
and correct errors in intermediate reasoning
steps, leading to cascading error propagation.
To address these issues, we propose Table-
Critic, a novel multi-agent framework that fa-
cilitates collaborative criticism and iterative re-
finement of the reasoning process until con-
vergence to correct solutions. Our framework
consists of four specialized agents: a Judge for
error identification, a Critic for comprehensive
critiques, a Refiner for process improvement,
and a Curator for pattern distillation. To effec-
tively deal with diverse and unpredictable error
types, we introduce a self-evolving template
tree that systematically accumulates critique
knowledge through experience-driven learning
and guides future reflections. Extensive ex-
periments have demonstrated that Table-Critic
achieves substantial improvements over exist-
ing methods, achieving superior accuracy and
error correction rates while maintaining com-
putational efficiency and lower solution degra-
dation rate. The code is available at https:
//github.com/Peiying-Yu/Table-Critic.

1 Introduction

Despite significant advances in various reasoning
tasks (Plaat et al., 2024; Yu et al., 2024; Chen
et al., 2024a,b; Guo et al., 2025; Xu et al., 2025),
large language models (LLMs) (Yang et al., 2024a;
Dubey et al., 2024; Anthropic, 2024; Mesnard et al.,
2024; Hurst et al., 2024) face substantial challenges
in handling semi-structured data, such as table rea-
soning tasks, as they require both understanding

§Corresponding authors

of tabular structures and precise localization of
relevant entries in redundant and noisy informa-
tion (Zhao et al., 2024; Chen et al., 2024c; Zhang
et al., 2025).

Existing approaches address these challenges
through various decomposition strategies. For ex-
ample, Binder (Cheng et al., 2022) decomposes
complex questions into executable sub-programs
(i.e., SQL or Python), while approaches such as
Dater (Ye et al., 2023) and Chain-of-Table (Wang
et al., 2024) focus on dynamic table decomposi-
tion for context-aware reasoning. Although these
decomposition-based methods have demonstrated
promising performance, they suffer from a critical
limitation: the lack of effective mechanisms to crit-
icize and refine the intermediate reasoning steps.
This deficiency inevitably leads to error propaga-
tion throughout the reasoning process, significantly
affecting the accuracy of final predictions.

However, recent studies (Madaan et al., 2023;
Yang et al., 2024b) have revealed that while LLMs
possess self-reflection capabilities to some extent,
their self-reflection often lacks reliability and con-
sistency. Simply forcing LLMs to engage in self-
reflection may introduce additional biases, espe-
cially in table reasoning tasks, wherein models tend
to either rationalize their previous erroneous reason-
ing or over-criticize correct steps, rather than iden-
tifying genuine errors (Zheng et al., 2024; Chen
et al., 2025b).

To address these issues, we propose Table-Critic,
a multi-agent framework that introduces special-
ized agents to collaboratively criticize and refine
the reasoning process in a step-by-step manner.
Specifically, our Table-Critic simulates human-like
reflective behaviors through four targeted agents: a
Judge that identifies potential errors, a Critic that
provides detailed suggestions, a Refiner that re-
fines the entire reasoning process, and a Curator
that distills critique patterns to guide future reflec-
tion. The collaborative strategy among multiple

1

ar
X

iv
:2

50
2.

11
79

9v
3

 [
cs

.A
I]

 2
3

M
ay

 2
02

5

https://github.com/Peiying-Yu/Table-Critic
https://github.com/Peiying-Yu/Table-Critic

ID Name FA
Cup

FL
Trophy

1 Mark Phillips 1 0
2 Liam Dickinson 1 1
3 Blair Sturrock 0 1

[Question]: Which player has
one FA Cup and one FL Trophy?

[Reasoning Steps]:
Step 1: Select relevant rows. We need to look for ... So we select ‘Row 3’.
Step 2: Filter out useless columns ... So we select column ‘Name’, ‘FA Cup’ and ‘FL Trophy’.
Step 3: We obtain the sub table:

Col : Name | FA Cup | FL Trophy
Row 3 : Blair Sturrock | 0 | 1
The player who has one FA Cup and one FL Trophy is Blair Sturrock.

[Predicted Answer]: Blair Sturrock

[Table]:

Step 1 incorrectly selects Row 3
because its 'FA Cup' column has
a value of 0. Instead, Row 2,
with 1 FA Cup and 1 FL Trophy,
is the correct choice.

Critic
[Reasoning Steps]:
Step 1: Select relevant rows. Based on the critique, ... So we select ‘Row 2’.
...
[Predicted Answer]: Liam Dickinson

Refiner

Thought: Blair Sturrock has 0 FA Cups and 1 FL Trophy,
not both 1 FA Cup and 1 FL Trophy.
Reasoning Status: Incorrect !
Router: ROOT -> Sub-table Error -> Row Error

Judge

Error

ROOT

Sub-table

Error

Row

Error

Column

Error

... ...

Corr
ect

Row

Error

ROOT

Sub-table

Error

Column

Error

... ...
new template

ROOT

Sub-table

Error

...

ROOT

Sub-table

Error

Row

Error

Column

Error

... ...

new branch

new
node

Initial Solution

Curator

Self-evolving
Template Tree

Row

Error

ROOT

Sub-table

Error

Column

Error

... ...

Row

Error

ROOT

Sub-table

Error

Column

Error

... ...

ROOT

Sub-table

Error

Row

Error

Column

Error

... ...

Final Query

Error

...

new branch

Ⅰ. Adding Templates Ⅱ. Vertical Expansion Ⅲ. Horizontal Expansion

Figure 1: An illustration of Table-Critic, a multi-agent framework for table reasoning tasks, where the Judge
identifies errors, the Critic provides detailed critique, the Refiner corrects the reasoning process, and the Curator
updates a self-evolving template tree to accumulate critique knowledge and improve future performance.

agents is motivated by our two insights: (1) LLMs
demonstrate proficiency in identifying and re-
fining the first erroneous steps, yet tend to make
other mistakes in subsequent steps, particularly
when dealing with complex problems. This ob-
servation motivates our multi-turn design where
different agents continuously monitor and refine
the reasoning process until the Judge verifies its
correctness. (2) The diversity and unpredictabil-
ity of error types in the reasoning process make
it challenging for LLMs to effectively identify
them based solely on their inherent knowledge.
This insight motivates the development of a dy-
namic template repository that categorizes and
stores critique templates by error types, allowing
our multi-agent system to systematically accumu-
late critique knowledge. Specifically, the Curator
maintains a self-evolving template tree by expand-
ing branches or adding templates after the entire
reflection, while the Judge routes through the tree
based on the identified reasoning errors to locate
appropriate templates for assisting the Critic in gen-
erating high-quality critique, thereby facilitating
subsequent refinement. Through this self-evolving
template tree mechanism, our system continuously

accumulates and distills critique patterns from pre-
vious experiences, enabling more effective error
identification beyond LLMs’ inherent capabilities.
This experience-driven approach ensures continu-
ous improvement in the quality and consistency.

Our contributions are summarized as follows:
• We introduce Table-Critic, a novel multi-agent

framework where specialized agents collabora-
tively criticize and refine the reasoning process
for complex table reasoning tasks.

• We design a multi-turn refinement mechanism
where different agents continuously monitor and
improve the reasoning process, effectively miti-
gating error propagation in multi-step reasoning.

• We introduce a self-evolving template tree that
systematically accumulates and organizes cri-
tique knowledge, enabling our system to ef-
fectively handle emerging error types through
experience-driven learning.

• Extensive experiments demonstrate that Table-
Critic significantly outperforms existing meth-
ods and exhibits substantial advantages over ma-
jority voting under comparable or even superior
computational costs.

2

2 Related Work

Table Reasoning. Table reasoning, which requires
joint understanding of semi-structured tables and
questions, has evolved through several paradigms.
Early approaches focused on developing special-
ized models through fine-tuning (Yin et al., 2020;
Liu et al., 2021; Gu et al., 2022), while recent work
has shifted towards leveraging large language mod-
els (LLMs) in few-shot learning (Chen et al., 2024c;
Zhao et al., 2024). To handle complex reasoning
tasks, decomposition-based methods have emerged
as a promising direction. These methods break
down complex tasks into manageable steps, either
through program execution (Cheng et al., 2022) or
context-aware table partitioning (Ye et al., 2023;
Wang et al., 2024). However, a critical limitation
of existing approaches is their inability to effec-
tively critique and refine intermediate reasoning
steps, leading to error propagation. In contrast, our
Table-Critic framework addresses this limitation
by introducing systematic critique and refinement
mechanisms throughout the reasoning process.

Self-Reflection. Recent studies have revealed
that while LLMs possess inherent self-reflection
capabilities, they often suffer from reliability and
consistency issues (Madaan et al., 2023; Yang et al.,
2024b). Simply enforcing self-reflection can be
counterproductive, as models tend to either ratio-
nalize their errors or excessively critique correct
reasoning steps (Zheng et al., 2024; Chen et al.,
2025b). To address these limitations, our Table-
Critic introduces a structured approach through: (1)
a multi-agent framework where specialized agents
collaborate to provide targeted critiques, and (2) a
self-evolving template tree that systematically accu-
mulates and organizes critique knowledge. This de-
sign effectively overcomes the inherent limitations
of LLMs’ reflection capabilities while maintaining
reliable and consistent error identification.

3 Table-Critic

3.1 Overview
To effectively implement the human-like correc-
tion process in multi-step reasoning, we propose a
collaborative multi-agent framework, Table-Critic.
As illustrated in Figure 1, this framework decom-
poses the complex reasoning refinement task into
four specialized functions: error detection (Judge),
critique generation (Critic), reasoning refinement
(Refiner), and experience learning (Curator). These
agents work in concert to progressively improve

reasoning quality while accumulating valuable cor-
rection experiences. Specifically, given a table T
and a question q, these agents iteratively refine the
initial reasoning chain τ = {s1, s2, ..., sn} until
reaching a satisfactory solution.1 The refinement
process is guided by a self-evolving template tree
T that systematically accumulates critique patterns
from past experiences.

3.2 Multiple Agents

Inspired by human-like correction behavior, we
design four specialized agents—Judge, Critic, Re-
finer, and Curator—to facilitate criticizing and re-
fining in multi-step reasoning. We use specific
instructions to prompt LLM (π) to execute the cor-
responding operations. Formally, we define each
agent as follows:

Judge (Aj). The Judge agent is responsible for
identifying potential errors in the reasoning process.
Given a table T, question q, current reasoning chain
τ , and the template tree T , it analyzes each reason-
ing step and determines the specific error type if
any exists. Based on the identified error type (if
exists), the Judge routes through the template tree
T to locate appropriate templates for guiding the
subsequent critic agent. Formally, the Judge agent
operates as:

E,P,R = π(T, q, τ, T , instructionA
j
), (1)

where E denotes the error analysis for each reason-
ing step, P ∈ {Correct, Incorrect} indicates the
overall reasoning status, and R represents the rout-
ing path in the template tree that guides template
selection. Based on the routing path, we sample
relevant critique templates Ts from the template
tree T to guide the Critic agent in generating tar-
geted and high-quality critiques for the identified
errors. Notably, due to the self-evolving nature of
our template tree, when the Judge identifies an er-
ror type not yet present in the tree, we randomly
sample various error types from existing templates
to guide the Critic in generating helpful critique.

Critic (Ac). The Critic agent serves as a cru-
cial component in our framework, responsible for
generating detailed and constructive critiques for
the identified errors. With the guidance of sampled
critique templates Ts, the Critic agent locates the
first error step in the reasoning chain τ , analyzes
error details, and provides specific suggestions for

1We use Chain-of-Table (Wang et al., 2024) for initial
chains, though our framework is applicable to other methods.

3

subsequent refinement. Formally, the Critic agent
operates as:

C, I = π(T, q, τ, Ts, instructionA
c
), (2)

where C denotes the generated critique and I in-
dicates the index of the first error step in τ . The
effectiveness of the Critic agent directly impacts
the Refiner’s ability to correct reasoning errors,
which motivates our design of the template tree to
enhance critique quality.

Refiner (Ar). The Refiner agent is tasked with
correcting the reasoning chain based on the critique
provided by the Critic. Given the critique C, the
table T, question q, and the partial reasoning chain
up to the first error step (i.e., τp = {s1, ..., sI}),
the Refiner first rectifies the identified error and
then completes the remaining reasoning steps to
generate a full refined chain. Formally, the Refiner
agent operates as:

τ ′ = π(T, q, τp, C, instructionA
r
), (3)

where τ ′ represents the newly generated complete
reasoning chain.

Curator (Acu). The Curator agent serves as an
experience-driven learning component that distills
valuable critique templates from current refinement
processes. It is activated only after the complete
refinement process concludes, specifically when
the Judge agent verifies that the final reasoning
chain is error-free (P = Correct), as shown in
Figure 1. Through reviewing each refinement it-
eration and the existing template tree T , the Cura-
tor autonomously distills meaningful critique tem-
plates from effective refinement experiences. These
newly distilled templates are then incorporated into
T to enhance future critique generation. Formally,
the Curator operates as:

T ′ = π(T , H, instructionA
cu
), (4)

where H represents the complete refinement his-
tory, and T ′ denotes the updated template tree. The
detailed update strategy will be delineated in sub-
sequent sections.

3.3 Multi-turn Refinement
As discussed in the Introduction, the multi-turn
refinement in Table-Critic is motivated by our ob-
servation that LLMs often excel at identifying and
correcting the first error in reasoning chains, but
may introduce new errors in subsequent steps. To

address this challenge, we implement an iterative
refinement process where multiple agents collabo-
ratively monitor and improve the reasoning chain
until reaching a satisfactory solution.

Specifically, given an initial reasoning chain τ ,
our framework operates through the following steps
in each iteration: (1) The Judge agent first analyzes
the entire reasoning chain to identify potential er-
rors and determine their types. If no errors are
detected (P = Correct), the process terminates.
Otherwise, the Judge routes through the template
tree to locate relevant critique templates. (2) With
the guidance of sampled templates Ts, the Critic
agent generates detailed critiques C focusing on the
first identified error at step I . This strategy ensures
that each refinement iteration addresses errors se-
quentially, preventing the introduction of cascading
errors. (3) The Refiner agent then generates a new
reasoning chain τ ′ by incorporating the critique.
Importantly, the Refiner only receives the partial
chain τp up to the error step I , forcing it to recon-
struct the remaining steps with the help of critique.
This design prevents the Refiner from being biased
by previous erroneous chain. (4) The above pro-
cess continues iteratively until one of the following
conditions is met: the Judge determines the current
reasoning chain is correct (P = Correct) or the
maximum number of iterations K is reached.

Through this multi-turn design, Table-Critic ef-
fectively manages the complexity of multi-step rea-
soning refinement while maintaining the quality of
each correction step. The iterative nature of our
approach, combined with specialized agent roles
and strategic process control, enables robust and
efficient reasoning improvement.

3.4 Self-evolving Template Tree
To address the challenge of identifying diverse and
unpredictable error types in table reasoning, we
introduce a self-evolving template tree that system-
atically accumulates and organizes critique knowl-
edge. This dynamic structure enables our system
to effectively handle both common and emerging
error patterns through experience-driven learning.

Tree Structure. The template tree T represents
a hierarchical structure that captures the relation-
ships among different error types. As shown in
Figure 1, each node in the tree represents a specific
type of error, where: (1) Internal nodes represent
broader error categories (e.g., Sub-table Error) that
can be further subdivided into more specific er-
ror types. (2) Leaf nodes represent specific error

4

types (e.g., Row Error, Column Error) and maintain
a repository of critique templates associated with
that particular error type.

Self-evolving Mechanism. The template tree
evolves dynamically through the Curator agent,
which manages two primary operations: adding
templates to existing leaf nodes and expanding tree
branches. As illustrated in Figure 1, the evolution
process includes:

(1) Template Enhancement. When new effective
critique patterns are identified, the Curator adds
them to the corresponding leaf node’s template
repository. This operation enriches existing error
type categories without changing the tree structure.
For instance, when a new effective template for
Row Error is discovered, it is directly added to the
corresponding template repository.

(2) Branch Expansion. The Curator expands the
tree structure in two ways when new error types
are identified:
• Vertical Expansion: When a new error type is

discovered that requires more fine-grained cate-
gorization, the Curator performs a vertical split.
This operation transforms an existing leaf node
into an internal node with two new child nodes.
Specifically, the Curator first categorizes the ex-
isting templates in the leaf node with an appro-
priate name (e.g., Row Error), creating one new
leaf node. Then, it creates another leaf node
with a different name (e.g., Column Error) to
accommodate the newly discovered error type
and its corresponding templates. This process
ensures that each leaf node maintains a cohesive
collection of templates for a specific error type.

• Horizontal Expansion: When a completely new
error type is identified that parallels existing cat-
egories, the Curator adds a new branch at the
same level. This operation preserves the exist-
ing structure while accommodating new error
types. As illustrated in the Figure 1 (bottom),
the addition of the Final Query Error branch rep-
resents a horizontal expansion that complements
the existing Sub-table Error category.
Through these evolution mechanisms, our tem-

plate tree maintains a dynamic balance between pre-
serving accumulated knowledge and incorporating
new error patterns. The vertical expansion enables
more precise error categorization, while horizon-
tal expansion ensures comprehensive coverage of
diverse error types. This adaptive structure allows
the system to continuously improve its critique ca-

pabilities while maintaining organized and efficient
template management. The detailed pipeline of our
Table-Critic is presented in Appendix B.

4 Experiments

4.1 Experimental Setup

Datasets. We evaluate our approach on two stan-
dard benchmarks: (1) WikiTableQuestions (Wik-
iTQ) (Pasupat and Liang, 2015): A table reasoning
benchmark with 4,344 test samples from 421 tables.
(2) TabFact (Chen et al., 2020): A fact verification
benchmark in table reasoning with 2,024 test sam-
ples from 298 tables.

Baselines. We conduct comprehensive exper-
iments comparing Table-Critic against three cat-
egories of baselines: (1) Standard Reasoning.
End-to-End QA directly generates answers using
table and question as input. Few-Shot QA ex-
tends this by incorporating exemplar (Table, Ques-
tion, Answer) triplets from the training set. (2)
Decomposition-Based Reasoning. Binder (Cheng
et al., 2022) decomposes questions into executable
SQL/Python sub-programs. Dater (Ye et al., 2023)
employs parsing-execution-filling strategy with
sub-table decomposition. Chain-of-Table (Wang
et al., 2024) generates intermediate tables through
dynamic operations. (3) Critic-Based Reasoning.
Critic-CoT (Zheng et al., 2024) implements self-
reflection for error identification.

Implementation Details. To ensure compre-
hensive evaluation, we conduct experiments across
three LLMs: Qwen2.5-72B-Instruct (Yang et al.,
2024a), LLaMA3.3-70B-Instruct (Dubey et al.,
2024), and GPT-4o-mini (Hurst et al., 2024). For
all baseline methods, we follow their original set-
tings to ensure optimal performance. For fair com-
parison, both Critic-CoT (Zheng et al., 2024) and
our Table-Critic framework are implemented upon
Chain-of-Table (Wang et al., 2024). For our Table-
Critic, the template tree is initialized with only
2 templates that demonstrate basic critique pat-
terns. From this minimal starting point, the tree
evolves autonomously through our self-evolving
mechanism, continuously learning and incorporat-
ing new critique patterns. For all experiments, we
set the maximum refinement iterations K to 5 and
use temperature 0.0 for greedy decoding. The de-
tailed prompts and instructions for each agent in
our framework are provided in Appendix E.

5

Method Qwen2.5-72B LLaMA3.3-70B GPT-4o-mini Average

WikiTQ TabFact WikiTQ TabFact WikiTQ TabFact WikiTQ TabFact

End-to-End QA 56.6 85.1 51.1 81.0 52.6 73.5 53.4 79.9
Few-Shot QA 61.7 85.0 62.0 80.7 57.6 75.1 60.4 80.3
Binder (Cheng et al., 2022) 57.0 82.2 52.2 80.5 54.8 83.3 54.7 82.0
Dater (Ye et al., 2023) 63.8 90.0 59.5 87.6 65.8 83.6 63.0 87.1
Chain-of-Table (Wang et al., 2024) 68.3 89.7 62.1 89.9 67.5 88.9 66.0 89.5
Critic-CoT (Zheng et al., 2024) 69.0 89.8 66.8 88.0 66.3 86.9 67.4 88.2

Table-Critic (ours) 77.2 92.6 70.1 91.5 73.9 91.1 73.7 91.7
↑8.2 ↑2.6 ↑3.3 ↑1.6 ↑6.4 ↑2.2 ↑6.3 ↑2.2

Table 1: Table reasoning results on WikiTQ and TabFact with Qwen2.5-72B, LLaMA3.3-70B, and GPT-4o-mini.
Bold denotes the best performance and underline denotes the second-best performance.

4.2 Main Results

We report the performance on different table reason-
ing benchmarks across different LLMs in Table 1.
Our comprehensive evaluation reveals several key
findings: First, Table-Critic consistently outper-
forms all baseline methods across both datasets
and all three LLMs. On average, our method
achieves 73.7% accuracy on WikiTQ and 91.7% on
TabFact, representing significant improvements of
6.3% and 2.2% respectively over the strongest base-
lines. Second, the improvements are robust across
different model architectures. With Qwen2.5-72B-
Instruct, we achieve the highest absolute perfor-
mance (77.2% on WikiTQ, 92.6% on TabFact),
showing substantial gains of 8.2% and 2.6% re-
spectively. Similar patterns are observed with
LLaMA3.3-70B-Instruct and GPT-4o-mini, demon-
strating the framework’s generalizability across dif-
ferent foundation models. Third, the performance
variations between WikiTQ and TabFact provide
insights into our method’s strengths. Table-Critic
shows larger improvements on WikiTQ (average
+6.3%) compared to TabFact (average +2.2%), indi-
cating its particular effectiveness in handling com-
plex, multi-step reasoning tasks. This aligns with
our framework design, as WikiTQ’s compositional
questions benefit more from our multi-turn refine-
ment and self-evolving template tree mechanism
than TabFact’s binary verification tasks. Never-
theless, the consistent improvements on TabFact
demonstrate our method’s capability even in sim-
pler scenarios. Finally, comparing against different
baseline categories reveals the advancement of our
approach. While recent methods like Chain-of-
Table (Wang et al., 2024) and Critic-CoT (Zheng
et al., 2024) have made notable progress through
decomposition and criticism mechanisms, Table-
Critic achieves substantially larger improvements

over these strong baselines. This suggests that our
multi-agent framework, combining multi-turn re-
finement with self-evolving template tree, provides
a more effective solution for complex table reason-
ing tasks.

4.3 Analysis of Critic Effectiveness
As shown in Table 2, we conduct a detailed analysis
of different critic mechanisms by comparing Table-
Critic with Chain-of-Table (Wang et al., 2024) and
Critic-CoT (Zheng et al., 2024). Our analysis fo-
cuses on four key metrics: (1) Overall Accuracy
(Acc): The percentage of correctly solved ques-
tions; (2) Error Correction Rate (∆i→c): The per-
centage of questions incorrectly solved by Chain-
of-Table but corrected by different Critic methods;
(3) Solution Degradation Rate (∆c→i): The per-
centage of questions correctly solved by Chain-
of-Table but degraded by different Critic methods;
(4) Net Performance Gain (∆): The overall im-
provement relative to Chain-of-Table, calculated as
∆ = ∆i→c +∆c→i.

Error Correction vs. Solution Degradation.
Table-Critic demonstrates superior error correction
capabilities while minimizing solution degradation.
On WikiTQ, it successfully corrects 9.6% of Chain-
of-Table’s errors while only degrading 0.7% of cor-
rect solutions, resulting in a substantial net perfor-
mance gain (+8.9%). In contrast, Critic-CoT shows
a less effective pattern, with a 5.6% correction rate
offset by a high degradation rate (-4.9%), yielding
only a marginal improvement (+0.7%).

Task-Specific Performance. The effectiveness
of critique mechanisms varies across different tasks.
On WikiTQ, which involves complex multi-step
reasoning, Table-Critic achieves a higher error cor-
rection rate (+9.6% vs +5.6%) and maintains a
observably lower degradation (-0.7% vs -4.9%)
compared to Critic-CoT. For TabFact’s simpler ver-

6

Dataset Chain-of-Table Critic-CoT Table-Critic

Acc Acc ∆i→c ∆c→i ∆ Acc ∆i→c ∆c→i ∆

WikiTQ 68.3 69.0 +5.6 -4.9 +0.7 77.2 +9.6 -0.7 +8.9
TabFact 89.7 89.8 +2.9 -2.8 +0.1 92.6 +3.4 -0.5 +2.9

Table 2: Critic performance comparison of different critic methods. ∆i→c, ∆c→i, and ∆ measure the error correction
rate, solution degradation rate, and net performance gain relative to Chain-of-Table, respectively.

0 2 4 6 8 10
Iteration (K)

0.0

0.5

1.0

De
ns

ity

68
70
72
74
76
78

Ac
cu

ra
cy

 (%
)

(a) WikiTQ

0 2 4 6 8 10 12
Iteration (K)

0.0

0.4

De
ns

ity

84

86

88

90

92

94

Ac
cu

ra
cy

 (%
)

(b) TabFact

Figure 2: Analysis of Model Convergence and Iteration
Requirements on WikiTQ and TabFact Datasets.

ification tasks, while the improvements are more
modest, Table-Critic still maintains better stability
with lower degradation rates (-0.5% vs -2.8%).

Critic Stability. A key advantage of Table-Critic
is its stability in maintaining correct solutions. The
consistently low degradation rates (-0.7% for Wik-
iTQ and -0.5% for TabFact) suggest that our self-
evolving template tree effectively preserves valid
reasoning patterns while identifying and correct-
ing errors. This contrasts with Critic-CoT’s higher
degradation rates (-4.9% for WikiTQ and -2.8%
for TabFact), indicating potential instability in its
critique process.

4.4 Analysis of Multi-Turn Mechanism
To understand the effectiveness of our multi-turn
refinement mechanism, we analyze how model per-
formance evolves with the number of iterations K
and the distribution of required iteration counts (set
maximal K = 10), as shown in Figure 2.

Performance Evolution. On both datasets, we

observe a consistent pattern of rapid initial improve-
ment followed by gradual convergence. For Wik-
iTQ, the accuracy increases sharply from 67.6%
to 76.5% within the first three iterations and stabi-
lizes around 77% after six iterations. Similarly, on
TabFact, the performance improves significantly in
early iterations and plateaus at approximately 92%
after five iterations. This pattern suggests that our
multi-turn mechanism effectively refines solutions
through iterative improvements.

Iteration Distribution. The density plots re-
veal interesting insights about the complexity of
different tasks. On WikiTQ, we observe a broader
distribution with multiple peaks, indicating that
questions require varying numbers of iterations for
resolution. The main peak occurs at 1-2 iterations,
with smaller peaks extending up to 10 iterations, re-
flecting the diverse complexity of multi-step reason-
ing questions. TabFact also shows a concentrated
distribution with two distinct peaks: a primary peak
at 1-2 iterations and a secondary peak around 10
iterations. This bimodal pattern suggests that Tab-
Fact tend to fall into two categories: (1) straightfor-
ward cases that can be verified quickly within 1-2
iterations, and (2) complex cases that require exten-
sive refinement to reach a conclusive verification.
This distribution aligns with the inherent nature
of fact verification tasks, where statements are ei-
ther relatively simple to verify or require careful
step-by-step examination.

Convergence and Stability Analysis. The re-
sults suggest that while our method allows for up
to 10 iterations, most improvements are achieved
within the first 5 iterations. This efficient conver-
gence, combined with our early termination mech-
anism, helps maintain computational efficiency
while ensuring thorough reasoning. Notably, as
evidenced in Table 2, Table-Critic maintains stable
performance across iterations without the degrada-
tion typically seen in iterative approaches, demon-
strating the effectiveness of our Critic agent and
self-evolving template tree mechanism.

7

1 3 5 7 9 11 13 15
Solutions

66
68
70
72
74
76
78
80
82

Ac
cu

ra
cy

 (%
)

SC (Chain-of-Table)
Table-Critic

(a) WikiTQ

1 3 5 7 9 11 13 15
Solutions

89

90

91

92

93

94

95

Ac
cu

ra
cy

 (%
)

SC (Chain-of-Table)
Table-Critic

(b) TabFact

Figure 3: Computational cost and Effectiveness Com-
parison between SC (Self-Consistency Based on Chain-
of-Table) and our Table-Critic.

4.5 Analysis of Computational Cost

To ensure a fair comparison with Chain-of-
Table (Wang et al., 2024) in terms of computa-
tional cost, we conduct an analysis of the cost-
effectiveness trade-off, as shown in Figure 3. Since
Table-Critic builds upon Chain-of-Table by in-
corporating additional critique mechanisms, we
align the computational costs by allowing Chain-of-
Table to generate multiple solutions (majority vot-
ing) through Self-consistency (Wang et al., 2023)
(with temperature 0.8) and compare the perfor-
mance under equivalent or even superior computa-
tional budgets.

Efficiency Comparison. Our method requires
approximately 1.8-2.2× computational cost com-
pared to the basic Chain-of-Table. The complete
derivation process of computational cost is pro-
vided in Appendix C. However, as illustrated in
Figure 3, Table-Critic achieves substantially higher
accuracy (77.2% on WikiTQ and 92.6% on Tab-
Fact) compared to Chain-of-Table’s performance
even with 15 solution attempts. Notably, Chain-of-
Table shows only marginal improvements as the
number of solutions increases, reaching 70.0% on
WikiTQ and 90.1% on TabFact with 15 solutions.

Cost-Effectiveness Analysis. The results
demonstrate that simply increasing the number of
solution attempts in Chain-of-Table fails to achieve
comparable performance to Table-Critic, despite
consuming similar or even greater computational
resources. This suggests that our multi-agent re-
finement mechanism provides a more effective ap-
proach to improving reasoning accuracy than tra-
ditional majority voting strategies. The superior
performance of Table-Critic justifies its additional
computational overhead by offering substantially
better reasoning capabilities.

Method WikiTQ Tabfact

Table-Critic 77.2 92.6
w/o Self-evolving 76.1 90.8

↓1.1 ↓1.8

Table 3: The impact of self-evolving mechanism on our
template tree.

4.6 Analysis of Self-evolving Template Tree

To investigate the effectiveness of our self-evolving
mechanism, we conduct an ablation study compar-
ing Table-Critic with and without the dynamic tem-
plate evolution capability, as shown in Table 3. In
the static setting (w/o Self-evolving), the template
tree remains fixed with its initial two templates,
while our full Table-Critic allows the Curator agent
to dynamically maintain and evolve the template
tree throughout the reasoning process.

Performance Impact. The results demonstrate
the clear benefits of the self-evolving mechanism.
Without template evolution, performance drops by
1.1% on WikiTQ (from 77.2% to 76.1%) and 1.8%
on TabFact (from 92.6% to 90.8%). The more
substantial performance gap on TabFact suggests
that template evolution is particularly beneficial for
fact verification tasks, where diverse verification
patterns may be needed.

Mechanism Analysis. These results highlight
the importance of dynamic adaptation in our frame-
work. The self-evolving mechanism allows the
template tree to expand beyond its initial state, ac-
commodating diverse reasoning patterns encoun-
tered during the critique process. This flexibility
enables more effective error detection and correc-
tion compared to a static template approach. The
performance gains validate our design choice of in-
corporating dynamic template evolution, showing
that the ability to adapt and expand the template
structure is crucial for robust table reasoning. For
reference, we provide visualizations of both the
initial template tree and its evolved state in Ap-
pendix D, illustrating how the tree structure adapts
to accommodate different reasoning patterns.

5 Conclusion

In this paper, we propose Table-Critic, a novel
multi-agent framework that enhances table reason-
ing through collaborative criticism and refinement.
Our approach introduces four specialized agents
working in concert with a self-evolving template
tree, effectively addressing the challenges of error

8

identification and correction in complex table rea-
soning tasks. Extensive experiments demonstrate
that our method significantly outperforms existing
approaches, achieving substantial improvements
across different datasets while maintaining robust
performance stability.

Limitations

Our Table-Critic framework has demonstrated
strong performance in enhancing table reasoning
through multi-agent collaboration and systematic
refinement. While our current implementation fo-
cuses primarily on textual table reasoning, the pro-
posed multi-agent critique framework is inherently
flexible and can potentially be extended to various
other scenarios. For instance, the framework could
be adapted to handle multimodal reasoning tasks
where tables are combined with images, graphs, or
other visual elements. We believe the core prin-
ciples of our approach—collaborative criticism,
iterative refinement, and self-evolving template
tree—could contribute to broader applications in
complex reasoning tasks beyond the current textual
domain.

Acknowledgments

This work was supported by three NSFC grants, i.e.,
No.62006166, No.62376178 and No.62076175.
This work was also supported by Collaborative
Innovation Center of Novel Software Technology
and Industrialization, and supported by a Project
Funded by the Priority Academic Program Devel-
opment of Jiangsu Higher Education Institutions
(PAPD).

References

Anthropic. 2024. Introducing computer use, a new
claude 3.5 sonnet, and claude 3.5 haiku. Anthropic
Blog.

Guoxin Chen, Minpeng Liao, Chengxi Li, and Kai Fan.
2024a. Alphamath almost zero: Process supervision
without process. In Advances in Neural Information
Processing Systems, volume 37, pages 27689–27724.
Curran Associates, Inc.

Guoxin Chen, Minpeng Liao, Chengxi Li, and Kai
Fan. 2024b. Step-level value preference optimiza-
tion for mathematical reasoning. In Findings of the
Association for Computational Linguistics: EMNLP
2024, pages 7889–7903, Miami, Florida, USA. As-
sociation for Computational Linguistics.

Guoxin Chen, Minpeng Liao, Peiying Yu, Dingmin
Wang, Zile Qiao, Chao Yang, Xin Zhao, and
Kai Fan. 2025a. C-3PO: Compact plug-and-play
proxy optimization to achieve human-like retrieval-
augmented generation. In Forty-second International
Conference on Machine Learning.

Guoxin Chen, Zhong Zhang, Xin Cong, Fangda Guo,
Yesai Wu, Yankai Lin, Wenzheng Feng, and Yasheng
Wang. 2025b. Learning evolving tools for large
language models. In The Thirteenth International
Conference on Learning Representations.

Si-An Chen, Lesly Miculicich, Julian Eisenschlos,
Zifeng Wang, Zilong Wang, Yanfei Chen, Yasuhisa
Fujii, Hsuan-Tien Lin, Chen-Yu Lee, and Tomas
Pfister. 2024c. Tablerag: Million-token table un-
derstanding with language models. In Advances in
Neural Information Processing Systems 38: Annual
Conference on Neural Information Processing
Systems 2024, NeurIPS 2024, Vancouver, BC,
Canada, December 10 - 15, 2024.

Wenhu Chen, Hongmin Wang, Jianshu Chen, Yunkai
Zhang, Hong Wang, Shiyang Li, Xiyou Zhou,
and William Yang Wang. 2020. Tabfact: A
large-scale dataset for table-based fact verifi-
cation. In 8th International Conference on
Learning Representations, ICLR 2020, Addis
Ababa, Ethiopia, April 26-30, 2020. OpenRe-
view.net.

Zhoujun Cheng, Tianbao Xie, Peng Shi, Chengzu
Li, Rahul Nadkarni, Yushi Hu, Caiming Xiong,
Dragomir Radev, Mari Ostendorf, Luke Zettlemoyer,
et al. 2022. Binding language models in symbolic
languages. arXiv preprint arXiv:2210.02875.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang,
Archi Mitra, Archie Sravankumar, Artem Korenev,
Arthur Hinsvark, Arun Rao, Aston Zhang, Aurélien
Rodriguez, Austen Gregerson, Ava Spataru, Bap-
tiste Rozière, Bethany Biron, Binh Tang, Bobbie
Chern, Charlotte Caucheteux, Chaya Nayak, Chloe
Bi, Chris Marra, Chris McConnell, Christian Keller,
Christophe Touret, Chunyang Wu, Corinne Wong,
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Al-
lonsius, Daniel Song, Danielle Pintz, Danny Livshits,
David Esiobu, Dhruv Choudhary, Dhruv Mahajan,
Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes,
Egor Lakomkin, Ehab AlBadawy, Elina Lobanova,
Emily Dinan, Eric Michael Smith, Filip Radenovic,
Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Geor-
gia Lewis Anderson, Graeme Nail, Grégoire Mialon,
Guan Pang, Guillem Cucurell, Hailey Nguyen, Han-
nah Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov,
Imanol Arrieta Ibarra, Isabel M. Kloumann, Ishan
Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan
Geffert, Jana Vranes, Jason Park, Jay Mahadeokar,
Jeet Shah, Jelmer van der Linde, Jennifer Billock,
Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi,
Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu,

9

https://www.anthropic.com/news/3-5-models-and-computer-use
https://www.anthropic.com/news/3-5-models-and-computer-use
https://proceedings.neurips.cc/paper_files/paper/2024/file/30dfe47a3ccbee68cffa0c19ccb1bc00-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/30dfe47a3ccbee68cffa0c19ccb1bc00-Paper-Conference.pdf
https://doi.org/10.18653/v1/2024.findings-emnlp.463
https://doi.org/10.18653/v1/2024.findings-emnlp.463
https://openreview.net/forum?id=hlpwAmQ4wr
https://openreview.net/forum?id=hlpwAmQ4wr
https://openreview.net/forum?id=hlpwAmQ4wr
https://openreview.net/forum?id=wtrDLMFU9v
https://openreview.net/forum?id=wtrDLMFU9v
http://papers.nips.cc/paper_files/paper/2024/hash/88dd7aa6979e352fda7c4952ca8eac59-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/88dd7aa6979e352fda7c4952ca8eac59-Abstract-Conference.html
https://openreview.net/forum?id=rkeJRhNYDH
https://openreview.net/forum?id=rkeJRhNYDH
https://openreview.net/forum?id=rkeJRhNYDH

Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph
Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia,
Kalyan Vasuden Alwala, Kartikeya Upasani, Kate
Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, and
et al. 2024. The llama 3 herd of models. CoRR,
abs/2407.21783.

Zihui Gu, Ju Fan, Nan Tang, Preslav Nakov, Xi-
aoman Zhao, and Xiaoyong Du. 2022. PASTA:
table-operations aware fact verification via sentence-
table cloze pre-training. In Proceedings of the
2022 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2022, Abu Dhabi,
United Arab Emirates, December 7-11, 2022, pages
4971–4983. Association for Computational Linguis-
tics.

Shuhao Guan and Derek Greene. 2024. Advancing
post-OCR correction: A comparative study of syn-
thetic data. In Findings of the Association for
Computational Linguistics: ACL 2024, pages 6036–
6047, Bangkok, Thailand. Association for Computa-
tional Linguistics.

Shuhao Guan, Moule Lin, Cheng Xu, Xinyi Liu, Jin-
man Zhao, Jiexin Fan, Qi Xu, and Derek Greene.
2025. Prep-OCR: A complete pipeline for docu-
ment image restoration and enhanced OCR accuracy.
In The 63rd Annual Meeting of the Association for
Computational Linguistics.

Shuhao Guan, Cheng Xu, Moule Lin, and Derek Greene.
2024. Effective synthetic data and test-time adap-
tation for OCR correction. In Proceedings of the
2024 Conference on Empirical Methods in Natural
Language Processing, pages 15412–15425, Miami,
Florida, USA. Association for Computational Lin-
guistics.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-r1: In-
centivizing reasoning capability in llms via reinforce-
ment learning. arXiv preprint arXiv:2501.12948.

Taicheng Guo, Xiuying Chen, Yaqi Wang, Ruidi Chang,
Shichao Pei, Nitesh V. Chawla, Olaf Wiest, and Xi-
angliang Zhang. 2024. Large language model based
multi-agents: A survey of progress and challenges. In
Proceedings of the Thirty-Third International Joint
Conference on Artificial Intelligence, IJCAI 2024,
Jeju, South Korea, August 3-9, 2024, pages 8048–
8057. ijcai.org.

Aaron Hurst, Adam Lerer, Adam P. Goucher, Adam
Perelman, Aditya Ramesh, Aidan Clark, AJ Ostrow,
Akila Welihinda, Alan Hayes, Alec Radford, Alek-
sander Madry, Alex Baker-Whitcomb, Alex Beu-
tel, Alex Borzunov, Alex Carney, Alex Chow, Alex
Kirillov, Alex Nichol, Alex Paino, Alex Renzin,
Alex Tachard Passos, Alexander Kirillov, Alexi Chris-
takis, Alexis Conneau, Ali Kamali, Allan Jabri, Al-
lison Moyer, Allison Tam, Amadou Crookes, Amin
Tootoonchian, Ananya Kumar, Andrea Vallone, An-
drej Karpathy, Andrew Braunstein, Andrew Cann,

Andrew Codispoti, Andrew Galu, Andrew Kondrich,
Andrew Tulloch, Andrey Mishchenko, Angela Baek,
Angela Jiang, Antoine Pelisse, Antonia Woodford,
Anuj Gosalia, Arka Dhar, Ashley Pantuliano, Avi
Nayak, Avital Oliver, Barret Zoph, Behrooz Ghor-
bani, Ben Leimberger, Ben Rossen, Ben Sokolowsky,
Ben Wang, Benjamin Zweig, Beth Hoover, Blake
Samic, Bob McGrew, Bobby Spero, Bogo Giertler,
Bowen Cheng, Brad Lightcap, Brandon Walkin,
Brendan Quinn, Brian Guarraci, Brian Hsu, Bright
Kellogg, Brydon Eastman, Camillo Lugaresi, Car-
roll L. Wainwright, Cary Bassin, Cary Hudson,
Casey Chu, Chad Nelson, Chak Li, Chan Jun Shern,
Channing Conger, Charlotte Barette, Chelsea Voss,
Chen Ding, Cheng Lu, Chong Zhang, Chris Beau-
mont, Chris Hallacy, Chris Koch, Christian Gibson,
Christina Kim, Christine Choi, Christine McLeavey,
Christopher Hesse, Claudia Fischer, Clemens Winter,
Coley Czarnecki, Colin Jarvis, Colin Wei, Constantin
Koumouzelis, and Dane Sherburn. 2024. Gpt-4o sys-
tem card. CoRR, abs/2410.21276.

Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi
Lin, Weizhu Chen, and Jian-Guang Lou. 2021.
Tapex: Table pre-training via learning a neural sql
executor. arXiv preprint arXiv:2107.07653.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
Shashank Gupta, Bodhisattwa Prasad Majumder,
Katherine Hermann, Sean Welleck, Amir Yazdan-
bakhsh, and Peter Clark. 2023. Self-refine: Itera-
tive refinement with self-feedback. In Advances in
Neural Information Processing Systems 36: Annual
Conference on Neural Information Processing
Systems 2023, NeurIPS 2023, New Orleans, LA,
USA, December 10 - 16, 2023.

Thomas Mesnard, Cassidy Hardin, Robert Dadashi,
Surya Bhupatiraju, Shreya Pathak, Laurent Sifre,
Morgane Rivière, Mihir Sanjay Kale, Juliette Love,
Pouya Tafti, Léonard Hussenot, Aakanksha Chowdh-
ery, Adam Roberts, Aditya Barua, Alex Botev, Alex
Castro-Ros, Ambrose Slone, Amélie Héliou, Andrea
Tacchetti, Anna Bulanova, Antonia Paterson, Beth
Tsai, Bobak Shahriari, Charline Le Lan, Christo-
pher A. Choquette-Choo, Clément Crepy, Daniel Cer,
Daphne Ippolito, David Reid, Elena Buchatskaya,
Eric Ni, Eric Noland, Geng Yan, George Tucker,
George-Cristian Muraru, Grigory Rozhdestvenskiy,
Henryk Michalewski, Ian Tenney, Ivan Grishchenko,
Jacob Austin, James Keeling, Jane Labanowski,
Jean-Baptiste Lespiau, Jeff Stanway, Jenny Brennan,
Jeremy Chen, Johan Ferret, Justin Chiu, and et al.
2024. Gemma: Open models based on gemini re-
search and technology. CoRR, abs/2403.08295.

Panupong Pasupat and Percy Liang. 2015. Compo-
sitional semantic parsing on semi-structured tables.
arXiv preprint arXiv:1508.00305.

Aske Plaat, Annie Wong, Suzan Verberne, Joost
Broekens, Niki van Stein, and Thomas Back. 2024.

10

https://doi.org/10.48550/ARXIV.2407.21783
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.331
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.331
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.331
https://doi.org/10.18653/v1/2024.findings-acl.361
https://doi.org/10.18653/v1/2024.findings-acl.361
https://doi.org/10.18653/v1/2024.findings-acl.361
https://doi.org/10.18653/v1/2024.emnlp-main.862
https://doi.org/10.18653/v1/2024.emnlp-main.862
https://doi.org/10.48550/ARXIV.2410.21276
https://doi.org/10.48550/ARXIV.2410.21276
http://papers.nips.cc/paper_files/paper/2023/hash/91edff07232fb1b55a505a9e9f6c0ff3-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/91edff07232fb1b55a505a9e9f6c0ff3-Abstract-Conference.html
https://doi.org/10.48550/ARXIV.2403.08295
https://doi.org/10.48550/ARXIV.2403.08295

Reasoning with large language models, a survey.
arXiv preprint arXiv:2407.11511.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le,
Ed H. Chi, Sharan Narang, Aakanksha Chowdhery,
and Denny Zhou. 2023. Self-consistency improves
chain of thought reasoning in language models. In
The Eleventh International Conference on Learning
Representations.

Zilong Wang, Hao Zhang, Chun-Liang Li, Julian Martin
Eisenschlos, Vincent Perot, Zifeng Wang, Lesly Mi-
culicich, Yasuhisa Fujii, Jingbo Shang, Chen-Yu Lee,
et al. 2024. Chain-of-table: Evolving tables in the
reasoning chain for table understanding. Proceedings
of the 12th International Conference on Learning
Representations,ICLR 2024.

Zhenhua Xu, Zhebo Wang, Maike Li, Wenpeng Xing,
Chunqiang Hu, Chen Zhi, and Meng Han. 2025. Rap-
sm: Robust adversarial prompt via shadow models
for copyright verification of large language models.
arXiv preprint arXiv:2505.06304.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, et al. 2024a. Qwen2. 5
technical report. arXiv preprint arXiv:2412.15115.

Zhe Yang, Yichang Zhang, Yudong Wang, Ziyao Xu,
Junyang Lin, and Zhifang Sui. 2024b. Confidence
v.s. critique: A decomposition of self-correction ca-
pability for llms. CoRR, abs/2412.19513.

Yunhu Ye, Binyuan Hui, Min Yang, Binhua Li,
Fei Huang, and Yongbin Li. 2023. Large lan-
guage models are versatile decomposers: Decompos-
ing evidence and questions for table-based reason-
ing. In Proceedings of the 46th International ACM
SIGIR Conference on Research and Development in
Information Retrieval, pages 174–184.

Pengcheng Yin, Graham Neubig, Wen-tau Yih, and Se-
bastian Riedel. 2020. Tabert: Pretraining for joint
understanding of textual and tabular data. arXiv
preprint arXiv:2005.08314.

Fei Yu, Hongbo Zhang, Prayag Tiwari, and Benyou
Wang. 2024. Natural language reasoning, a survey.
ACM Computing Surveys, 56(12):1–39.

Bin Zhang, Hangyu Mao, Lijuan Li, Zhiwei Xu, Dapeng
Li, Rui Zhao, and Guoliang Fan. 2024. Sequential
asynchronous action coordination in multi-agent sys-
tems: A stackelberg decision transformer approach.
In Proceedings of the 41st International Conference
on Machine Learning, volume 235 of Proceedings
of Machine Learning Research, pages 59559–59575.
PMLR.

Xuanliang Zhang, Dingzirui Wang, Longxu Dou,
Qingfu Zhu, and Wanxiang Che. 2025. A sur-
vey of table reasoning with large language models.
Frontiers of Computer Science, 19(9):199348.

Yilun Zhao, Lyuhao Chen, Arman Cohan, and Chen
Zhao. 2024. Tapera: Enhancing faithfulness and in-
terpretability in long-form table QA by content plan-
ning and execution-based reasoning. In Proceedings
of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long
Papers), ACL 2024, Bangkok, Thailand, August
11-16, 2024, pages 12824–12840. Association for
Computational Linguistics.

Xin Zheng, Jie Lou, Boxi Cao, Xueru Wen, Yuqiu Ji,
Hongyu Lin, Yaojie Lu, Xianpei Han, Debing Zhang,
and Le Sun. 2024. Critic-cot: Boosting the reason-
ing abilities of large language model via chain-of-
thoughts critic. CoRR, abs/2408.16326.

11

https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://doi.org/10.48550/ARXIV.2412.19513
https://doi.org/10.48550/ARXIV.2412.19513
https://doi.org/10.48550/ARXIV.2412.19513
https://doi.org/10.18653/V1/2024.ACL-LONG.692
https://doi.org/10.18653/V1/2024.ACL-LONG.692
https://doi.org/10.18653/V1/2024.ACL-LONG.692
https://doi.org/10.48550/ARXIV.2408.16326
https://doi.org/10.48550/ARXIV.2408.16326
https://doi.org/10.48550/ARXIV.2408.16326

A Additional Related works

Multi-agent Systems. Multi-agent systems have
recently demonstrated promising potential in com-
plex reasoning tasks by enabling collaborative
problem-solving through specialized agents (Guo
et al., 2024; Zhang et al., 2024; Guan and Greene,
2024; Chen et al., 2025a). These systems typically
leverage the complementary strengths of different
agents to achieve more robust and effective solu-
tions than single-agent approaches. While exist-
ing work has explored multi-agent frameworks in
various domains (Guan et al., 2024, 2025), their
application to table reasoning tasks remains largely
unexplored. To our knowledge, our Table-Critic
presents the first attempt to introduce a multi-agent
framework for table reasoning, where specialized
agents collaborate to identify, critique, and refine
reasoning steps, offering a novel perspective on ad-
dressing the challenges in complex table reasoning
tasks.

B More Implementation Details

In this section, we provide a comprehensive im-
plementation details of our proposed method. For
additional insights and more intricate details, we
refer the reader to our supplementary materials.

B.1 Overall Pipeline of Table-Critic

Table-Critic employs an iterative process to cri-
tique and refine the reasoning chain and predicted
answer for table reasoning tasks. As described in
Algorithm 1, the process begins with an input table
T, a question q, an initial reasoning chain τ , and a
template tree T . The Judge agent is first invoked
to evaluate the correctness of the reasoning chain
(Line 2). This evaluation yields the reasoning sta-
tus P , an error analysis E, and a routing path R in
the template tree.

When the reasoning chain is deemed incorrect
(P = Incorrect), Table-Critic proceeds by sam-
pling relevant critique templates Ts from the tem-
plate tree using the routing path R (Line 4). These
templates are then used by the Critic agent to gen-
erate a detailed critique C and identify the index of
the first error step I in the reasoning chain (Line
5). To address the identified errors, the Refiner
agent retains the reasoning steps up to step I and
refines the chain starting from step I , guided by the
critique C (Line 6). The refined reasoning chain τ ′

is subsequently re-evaluated by the Judge agent to
determine if it is now correct (Line 7).

This refinement loop continues iteratively un-
til the reasoning chain is verified as correct (P =
Correct). Once a correct reasoning chain is estab-
lished, the Curator agent updates the template tree
T by incorporating new critique templates distilled
from the refinement history. This update enhances
the template tree’s ability to support future refine-
ment processes (Line 9).

The final output of Table-Critic is the refined
reasoning chain τ ′, which represents the accurate
and improved solution to the table reasoning task.
By systematically identifying and addressing errors
in a collaborative multi-step process, Table-Critic
ensures robust and precise refinement of reasoning
chains and answers.

B.2 LLM Servers
Our approach implements agent behaviors through
in-context learning, requiring no extensive train-
ing procedures. We deploy multiple LLM servers,
including Qwen2.5-72B-Instruct and LLaMA3.3-
70B-Instruct through the SGLang inference en-
gine, and GPT-4o-mini via its provided API ser-
vice. While the choice between fine-tuning and
in-context learning remains an open question, it is
not the primary focus of our work. Following prior
studies (Wang et al., 2024; Zheng et al., 2024), we
adopt in-context learning as our implementation
strategy for its simplicity and effectiveness.

C Detailed Computational Cost Analysis

This appendix evaluates the computational cost of
Table-Critic relative to the baseline Chain-of-Table
method. The computational cost is analyzed for
two datasets, WikiTQ and TabFact, based on the
number of input and output tokens required. All
token counts are expressed in millions (M), and the
cost ratio reflects the relative cost of Table-Critic
compared to Chain-of-Table.

C.1 Computational Cost Definition
The computational cost of a prompt-based method
is defined as follows:

Ntotal = Nin·
(

Pin

Pin + Pout

)
+Nout·

(
Pout

Pin + Pout

)
,

(5)
where Nin and Nout represent the number of in-
put and output tokens, and Pin and Pout denote
the costs per token for input and output, respec-
tively. Based on the pricing model of Qwen2.5-
72B-Instruct, Pin = 0.004 CNY per thousand to-
kens and Pout = 0.012 CNY per thousand tokens.

12

https://docs.sglang.ai/

Algorithm 1 The overall pipeline of Table-Critic

Input: Table T, question q, initial reasoning chain τ , the template tree T .
Output: The refined reasoning chain τ ′.

1: H ← ∅ ▷ Initialize refinement history.

2: P,E,R← Judge(T, q, τ, T)
3: while P = Incorrect do
4: Ts ← Sample Templates using R in the T
5: C, I ← Critic(T, q, τ, Ts) ▷ Generating critique C and identify the index of first error step I .

6: τp ← τ [: I] ▷ Retain the partial reasoning steps up to step I

7: τ ′ ← Refiner(T, q, τp, C) ▷ Refine the reasoning chain.

8: H ← H ∪ {T, q, τ, τ ′, C} ▷ Update history.

9: P,E,R← Judge(T, q, τ ′, T) ▷ Re-evaluates the updated reasoning chain

10: end while
11: T ← Curator(T , H) ▷ Update the template tree T to facilitate future refinement.

12: return Refined reasoning chain τ ′ and new template tree T .

Dataset Chain-of-Table Table-Critic Cost Ratio

Input (M) Output (M) Total (M) Input (M) Output (M) Total (M) (TC/CoT)

WikiTQ 73.5 1.6 19.6 135.5 3.8 36.7 1.87×
TabFact 29.3 0.6 7.8 62.1 20.4 17.1 2.19×

Table 4: Computational Cost Comparison Between Chain-of-Table and Table-Critic (Token Counts in Millions)

Using the above values, the normalized cost
weights are:

Input Weight =
Pin

Pin + Pout
= 0.25,

Output Weight =
Pout

Pin + Pout
= 0.75.

Substituting these weights, the formula simpli-
fies to:

Ntotal = 0.25 ·Nin + 0.75 ·Nout. (6)

C.2 Dataset-Specific Computational Cost
Analysis

The computational cost of Table-Critic is compared
against Chain-of-Table for the WikiTQ and TabFact
datasets. Detailed token counts and cost ratios are
shown in Table 4.

On the WikiTQ dataset, Chain-of-Table incurs
a total computational cost of 19.6M, with 73.5M
input tokens and 1.6M output tokens. In con-
trast, Table-Critic requires 135.5M input tokens
and 3.8M output tokens, resulting in a total cost of
36.7M. This corresponds to a cost ratio of 1.87×,
indicating that Table-Critic is approximately 1.87
times more computationally expensive than Chain-
of-Table on this dataset.

On the TabFact dataset, Chain-of-Table incurs
a total computational cost of 7.8M, with 29.3M
input tokens and 0.6M output tokens. Table-Critic,
on the other hand, requires 62.1M input tokens and
20.4M output tokens, resulting in a total cost of
17.1M. This corresponds to a cost ratio of 2.19×,
indicating that Table-Critic is approximately 2.19
times more computationally expensive than Chain-
of-Table.

D Self-evolving Template Tree

Figure 4 illustrates the Self-evolving process of the
Template Tree. In the initial stage (Figure 4a), the
tree contains only two broad categories of errors:
Sub-table Error and Final Query Error, each rep-
resenting a high-level abstraction of error types.
Through the self-evolving mechanism, the tree
dynamically expands and refines its structure to
accommodate more fine-grained error types, as
shown in the evolved tree (Figure 4b).

It is important to note that the Evolved Tree is
considerably larger in practice, containing a more
extensive hierarchy of error types. However, for
clarity, only a subset of the evolved structure is
displayed here.

13

Row

Error

ROOT

Sub-table

Error

Column

Error

... ...
new template

ROOT

Sub-table

Error

...

ROOT

Sub-table

Error

Row

Error

Column

Error

... ...

new branch

new
node

Row

Error

ROOT

Sub-table

Error

Column

Error

... ...

Row

Error

ROOT

Sub-table

Error

Column

Error

... ...

ROOT

Sub-table

Error

Row

Error

Column

Error

... ...

Final Query

Error

...

new branch

Ⅰ. Adding Templates Ⅱ. Vertical Expansion Ⅲ. Horizontal Expansion

ROOT

Sub-table

Error

Final Query

Error

ROOT

Sub-table

Error

Final Query

Error

Omission

Error

Conclusion

Error

Counting

Error

Calculation

Error

Grouping

Error

Filtering

Error

Misidentification

Error

Row

Error

Column

Error

Average

Error

Summation

Error

Logical

Error

Selection

Error

(a) Initial Tree (b) Evolved Tree

Self-evolving

Multiplicative

Error

Figure 4: An example of self-evolving mechanism in our Template Tree.

E Prompts and Case Study

This appendix provides comprehensive instructions
and illustrative examples for four intelligent agents:
the Judge Agent, the Critic Agent, the Refiner
Agent, and the Curator Agent. These agents are
designed to collaboratively evaluate and refine rea-
soning processes applied to table-based questions.

Figures 5 and 6 offer detailed guidance for the
Judge Agent, including step-by-step procedures
to assess the validity of reasoning steps, pinpoint
errors, and categorize conclusions (e.g., correct,
incorrect with identified error route, or random er-
ror). Figures 7 and 8 explain how the Critic Agent
systematically evaluates each reasoning step, high-
lights the first incorrect step, and provides con-
structive critiques. Figure 9 introduces the Refiner
Agent, demonstrating how critiques are utilized
to refine reasoning steps, ensuring accurate and
complete solutions.

As for Curator Agent, Curator expands the tem-
plate tree T by adding templates to existing leaf
nodes or expanding tree branches (as described in
Algorithm 2). This process begins by invoking the
Judge agent to determine the routing path and eval-
uation status of the refinement history within the
context of the current template tree (Line 1). The
outcome, denoted as route, indicates whether the
refinement aligns successfully with any existing
route in T .

When the route is successful within T
(route.status = SUCCESS), Curator will perform
Adding Templates or Vertical Expansion. To make
this decision, Curator uses a prompt to assess the
similarity between the refinement history H and
the sampled templates Tr (see Figure 10). The
agent then checks whether the refinement history
H is sufficiently similar to the node Tr (Line 4).

If so (Figure 11), the template tree is directly aug-
mented by adding the new template derived from H
through the AddTemplate function (Line 5). If the
refinement history diverges in content but follows
a related path (Figure 12), a VerticalExpansion
is performed to hierarchically extend the tree struc-
ture while preserving the routing path (Line 7).

Conversely, if the refinement path does not cor-
respond to any existing route (route.status ̸= SUC-
CESS), the agent invokes HorizontalExpansion
to create a new sibling branch in the template tree,
thereby broadening its representational capacity
(Line 10). This horizontal expansion process is
shown in Figure 13, where a new branch is added
to accommodate unmatched templates.

This process ensures that the template tree T
evolves into a more expressive and comprehensive
structure T ′, capable of supporting a wider range of
reasoning refinements. The final evolved tree T ′ is
returned as the output (Line 12), encapsulating the
incremental knowledge acquired through iterative
refinement.

14

You are an intelligent judge tasked with evaluating the correctness of a given Prediction Answer.
If the Prediction Answer is incorrect, identify which step within the reasoning process is
incorrect and subsequently locate the corresponding error type within the error tree:
1. Original Table: The raw table data.
2. Question: The question pertaining to the table data.
3. Reasoning Steps: A step-by-step process of sub-table transformations and extractions based
on the following functions.

- f_add_column(): Adds a new column to the table.
- f_select_row(): Selects specific rows based on the question.
- f_select_column(): Removes irrelevant columns from the table.
- f_group_column(): Groups rows based on the values in a specific column.
- f_sort_column(): Sorts rows based on the values in a specified column.

4. Prediction Answer: The answer derived from the final sub-table.

Instruction:
1. Explanation: Conduct an explanation of why the Prediction Answer is correct or incorrect. If
it is incorrect, then conduct an analysis of each reasoning step’s validity.
2. Conclusion:
- If the Prediction Answer is correct, conclude with ‘Conclusion: [Correct]’.
- If the Prediction Answer is incorrect, conclude with either ‘Conclusion: [Incorrect] (ERROR

ROUTE)’ or ‘Conclusion: [Incorrect] (random)’.
- Use ‘(ERROR ROUTE)’ to indicate the specific path in the error tree that represents the

error.
- If no such route can be identified, use ‘(random)’ instead.

Figure 5: Instructions for the Judge Agent. These instructions outline the procedure for verifying the correctness of
a predicted answer and identifying errors within the reasoning process.

Algorithm 2 The implementation of Curator Agent

Input: The template tree T , the refinement history
H .

Output: The evolved tree T ′.
1: route← Judge(T , H)
2: if route.status = SUCCESS then
3: Tr ← Sample Templates using route in the

T
4: if H is similar to Tr then
5: T ′ ← AddTemplate(T , H)
6: else
7: T ′ ← VerticalExpansion(T , H)
8: end if
9: else

10: T ′ ← HorizontalExpansion(T , H)
11: end if
12: return Evolved template tree T ′

15

Original Table:
/*
col : res. | record | opponent | method | event | date | round | time | location | notes
row 1 : win | 12-3 | mike hayes | ko (punch) | ksw 25: khalidov vs. sakurai | december 7, 2013
| 1 | 1:12 | wrocław, poland
row 2 : win | 11–3 | nick moghadden | tko (punches) | bellator 99 | september 13, 2013 | 1 |
3:22 | temecula, california, united states | bellator debut
row 3 : loss | 10–3 | guto inocente | decision (unanimous) | strikeforce: barnett vs. cormier |
may 19, 2012 | 3 | 5:00 | san jose, california, united states | light heavyweight debut
row 4 : win | 10–2 | brett albee | tko (strikes) | strikeforce: diaz vs. daley | april 9, 2011
| 1 | 1:46 | san diego, california, united states
row 5 : loss | 9–2 | lavar johnson | ko (punches) | strikeforce challengers: bowling vs. voelker
| october 22, 2010 | 1 | 2:17 | fresno, california, united states
row 6 : win | 9–1 | eddie sapp | submission (rear-naked choke) | native fighting championship 6
| august 14, 2010 | 1 | 2:01 | campo, california, united states
row 7 : loss | 8–1 | cody goodale | decision (unanimous) | gladiator challenge: maximum force |
april 25, 2010 | 3 | 5:00 | san jacinto, california, united states
*/
Question:
how many loses did virgil zwicker have?
Reasoning Steps:
Step 1: Select relevant rows.
The question aims to find out the number of losses Virgil Zwicker had based on the provided fight
records. We need to count the rows where the "res." column shows "loss".
So we use f_select_row(row 3, row 5, row 7).
Step 2: Filter out useless columns.
similar words of the question link to columns:
loses -> record
column value of the question link to columns:
10–3 -> record
semantic sentence of the question link to columns:
None
So we use f_select_column(record).
Step 3: After using f_select_row(row 3, row 5, row 7) and f_select_column(record), we obtain the
sub table:
/*
col : record
row 1 : 10–3
row 2 : 9–2
row 3 : 8–1
*/
The provided table shows records of wins and losses but does not specify who the records belong
to. However, if we assume that the table represents Virgil Zwicker’s records, then we can deduce
the number of losses from each record. The losses in the records are 3, 2, and 1 respectively.
If we consider each row as a separate season or period, then the total number of losses would be
the sum of these losses: 3 + 2 + 1 = 6.
Prediction Answer:
6

Explanation:
Step 1 correctly identifies the relevant rows where the "res." column indicates a loss. The rows
selected are indeed the ones where the outcome is a loss. Step 1 is correct.
Step 2 incorrectly filters out the columns. The question asks for the number of losses, but
the filtering step selects only the ’record’ column, which combines wins and losses in a single
string (e.g., "10–3"). This does not directly provide the number of losses. Instead, the ’res.’
column should be used to count the losses directly. Step 2 is incorrect.

Conclusion: [Incorrect] (sub-table error -> column error -> <END>)

Figure 6: Example of Judge Agent’s Analysis and Error Detection. This example illustrates how the Judge Agent
evaluates reasoning steps, identifies errors, and determines the correctness of a predicted answer.

16

You are an intelligent critic tasked with determining which step of the table reasoning is
incorrect based on the following information:
1. Original Table: The raw table data.
2. Question: The question pertaining to the table data.
3. Reasoning Steps: A step-by-step process of sub-table transformations and extractions based
on the following functions.

- f_add_column(): Adds a new column to the table.
- f_select_row(): Selects specific rows based on the question.
- f_select_column(): Removes irrelevant columns from the table.
- f_group_column(): Groups rows based on the values in a specific column.
- f_sort_column(): Sorts rows based on the values in a specified column.

4. Prediction Answer: Final derived answer following the reasoning chain.

Instruction:
1. Step-wise Analysis: Conduct an evaluation of each reasoning step’s validity. The step that
is unnecessary but does not affect the answer is considered correct.
2. Analysis Categories:

- For correct steps: Provide validation reasoning and mark as Step <NUM> is correct.
- For incorrect steps: Detail the logical flaws and mark as Step <NUM> is incorrect.
- You should stop at the first incorrect step.

3. Conclude this critique: Summarize this critique with an explicit conclusion.
4. Conclusion Categories:

- Conclude with ’Conclusion: [Incorrect] Step <NUM>’.

Figure 7: Instructions for the Critic Agent. These instructions guide stepwise evaluation of reasoning steps.

17

Original Table:
/*
col : tie | home team | score | away team | attendance
row 1 : 1 | aylesbury united | 2-2 | windsor & eton | 847
row 2 : 2 | burscough | 5-0 | wakefield & emley | 437
row 3 : 3 | dover athletic | 0-3 | forest green roves | 932
row 4 : 4 | farnborough town | 2-0 | halifax town | 863
row 5 : 5 | gloucester city | 1-1 | southport | 1,237
row 6 : 6 | havant & waterlooville | 3-0 | hayes | 456
row 7 : 7 | margate | 0-2 | tamworth | 971
row 8 : 8 | yeovil town | 2-1 | northwich victoria | 4,469
*/
Question:
how many games attendance was under 1000?
Reasoning Steps:
Step 1: Select relevant rows.
The question aims to find out how many games had an attendance of less than 1000 people. To
answer this, we need to count the number of rows where the attendance column shows a number less
than 1000. So we use f_select_row(row 1, row 2, row 3, row 4, row 6, row 7).
Step 2: Filter out useless columns.
similar words of the question link to columns :
under 1000 -> attendance
column value of the question link to columns :
1000 -> attendance
semantic sentence of the question link to columns :
None
So we use f_select_column(attendance).
Step 3: After using f_select_row(row 1, row 2, row 3, row 4, row 6, row 7) and
f_select_column(attendance), we obtain the sub table:
/*
col : attendance
row 1 : 847
row 2 : 437
row 3 : 932
row 4 : 863
row 5 : 456
row 6 : 971
*/
The games with attendance under 1000 were rows 1, 2, 4, and 5. Therefore, there were 4 games
with attendance under 1000.
Prediction Answer:
4

Critique:
Step 1 correctly selects the rows that are relevant for further analysis regarding the attendance
being under 1000. It includes all the rows where the attendance values might potentially be less
than 1000, which are row 1, row 2, row 3, row 4, row 6, and row 7. This step makes the proper
initial identification based on the condition stated in the question. Step 1 is correct.
Step 2 filters out the columns effectively by choosing the "attendance" column. Since the question
is focused on the attendance values to determine which are under 1000, this step narrows down
the data to just what’s needed for the subsequent steps. Step 2 is correct.
Step 3 makes an error in counting the number of games with attendance under 1000. Looking at the
sub-table from Step 3, all the rows shown (row 1 with 847, row 2 with 437, row 3 with 932, row 4
with 863, row 5 with 456, row 6 with 971) have attendance values that are less than 1000. Step
3 is incorrect.

Conclusion: [Incorrect] Step 3

Figure 8: Example of Critic Agent’s Critique. This example demonstrates how to evaluate reasoning steps and
identify errors in the reasoning chain.

18

Now, we have produced part of the Function Chain, but gained a critique.
Function Chain: f_select_row(row 1)
After step 1 (f_select_row(row 1)), we obtain the sub-table:
/*
col : date introduced | class 1 (e.g. motorbike) | class 2 (e.g. car) | class 3 (e.g. car with

trailer) | class 4 (e.g. van) | class 5 (e.g. hgv)
row 1 : 23 july 2004 | £1.00 | £2.00 | £5.00 | £5.00 | £6.00

*/
Question: on what date did the toll for class 1 first go above 2.00?
Critique:
Step 1 is incorrect. The selected row (row 2) has the toll for class 1 set at £1.00, which is not
above £2.00. The first row where the toll for class 1 exceeds £2.00 is row 3, dated 16 august
2004. Therefore, the selection of row 2 is incorrect.

Based on the critique, please continue to produce a complete and correct Function Chain.
/*
col : date introduced | class 1 (e.g. motorbike) | class 2 (e.g. car) | class 3 (e.g. car with

trailer) | class 4 (e.g. van) | class 5 (e.g. hgv)
row 1 : 9 december 2003 | £1.00 | £2.00 | £5.00 | £5.00 | £10.00
row 2 : 23 july 2004 | £1.00 | £2.00 | £5.00 | £5.00 | £6.00
row 3 : 16 august 2004 | £2.00 | £3.00 | £6.00 | £6.00 | £6.00
row 4 : 14 june 2005 | £2.50 | £3.50 | £7.00 | £7.00 | £7.00
row 5 : 1 january 2008 | £2.50 | £4.50 | £8.00 | £9.00 | £9.00
row 6 : 1 january 2009 | £2.70 | £4.70 | £8.40 | £9.40 | £9.40
row 7 : 1 march 2010 | £2.70 | £5.00 | £9.00 | £10.00 | £10.00
row 8 : 1 march 2011 | £3.00 | £5.30 | £9.60 | £10.60 | £10.60
row 9 : 1 march 2012 | £3.00 | £5.50 | £10.00 | £11.00 | £11.00

*/
Question: on what date did the toll for class 1 first go above 2.00?
The next operation must be one of f_add_column(), f_select_row(), f_select_column(),
f_group_column(), or f_sort_column().

Function Chain:
f_select_row(row 3)

Figure 9: Example of Refiner Agent’s refinement. This example demonstrates how the critique is used to refine the
Function Chain to accurately answer the question.

You are organizing hierarchical categories and their associated few-shot examples. Currently,
you have two lists of few-shot examples under the same category. Your task is to decide whether
these two lists can be meaningfully split into two distinct subcategories.
Instructions:
Analyze the examples in the two lists to determine if there is a clear and meaningful distinction
between them.

- If a distinction exists, create two subcategories and assign each list to one of them.
- If no clear distinction exists, retain both lists under the original parent category.

Provide a clear explanation for your decision on whether to split or merge the lists, based on
their content.
Parent Category: row error
List 1:
[
(Template 1),
(Template 2),
...

]
List 2:
[

(New Template)
]

Figure 10: Instructions for determining whether the refinement history H is similar to sampled templates Tr. It
guides the model to decide if the new templates should be merged with the existing category or split into distinct
subcategories.

19

Explanation:
...
Determination:
List 1: <row error>
List 2: <row error>

Figure 11: Model explanation and categorization result when determining whether to add the refinement history H
to existing templates Tr. This corresponds to the AddTemplate operation in Algorithm 2.

Explanation:
...
Determination:
List 1: <row misidentification error>
List 2: <row omission error>

Figure 12: Model explanation and categorization decision when refinement history H is not exactly similar to
existing templates Tr. This corresponds to the VerticalExpansion step in Algorithm 2.

You are given an error tree represented as a dictionary and a template describing a specific
error.
If the error path corresponding to the template cannot be found in the error tree, extend the
error tree by adding a new branch at the appropriate location.
Ensure that:

- The new branch aligns logically with the existing structure of the error tree.
- The template can be correctly integrated into the tree under the newly added branch.

Error Tree:
{

"sub-table error": {
"row error": "<END>",
"column error": "<END>"

}
}
Template:
(New Template)
——————————————————————————————
For example, if the return result is as follows:
Addition: (final query error -> <END>)
Curator will add a "final query error" node under the root node for this new template.

Figure 13: Instructions and example of HorizontalExpansion. Prompt guiding the model to extend the template
tree horizontally by adding a new branch when the refinement history H does not match any existing template paths.
This corresponds to the HorizontalExpansion step in Algorithm 2.

20

	Introduction
	Related Work
	Table-Critic
	Overview
	Multiple Agents
	Multi-turn Refinement
	Self-evolving Template Tree

	Experiments
	Experimental Setup
	Main Results
	Analysis of Critic Effectiveness
	Analysis of Multi-Turn Mechanism
	Analysis of Computational Cost
	Analysis of Self-evolving Template Tree

	Conclusion
	Additional Related works
	More Implementation Details
	Overall Pipeline of Table-Critic
	LLM Servers

	Detailed Computational Cost Analysis
	Computational Cost Definition
	Dataset-Specific Computational Cost Analysis

	Self-evolving Template Tree
	Prompts and Case Study

